Defects of DNA mismatch repair in human prostate cancer.

نویسندگان

  • Y Chen
  • J Wang
  • M M Fraig
  • J Metcalf
  • W R Turner
  • N K Bissada
  • D K Watson
  • C W Schweinfest
چکیده

Loss of mismatch repair (MMR) function leads to the accumulation of errors that normally occur during DNA replication, resulting in genetic instability. Germ-line mutations of MMR genes in the patients with hereditary nonpolyposis colorectal cancer lead to inactivation of MMR protein functions, and the defects of MMR are well correlated to the high rate of microsatellite instability in their tumors. Previous studies (T. Uchida, et al. Oncogene, 10: 1019-1022, 1995; S. Egawa, et al. Cancer RES:, 55: 2418-2421, 1995; J. M. Cunningham, et al. Cancer RES:, 56: 4475-4482, 1996; X. Gao, et al. Oncogene, 9: 2999-3003, 1994; H. Rohrbach, et al. Prostate, 40: 20-27, 1999) have shown that genetic instability (chromosomal and microsatellite instability) is detectable in human prostate cancer. To elucidate the role of MMR genes in the tumorigenesis of prostate cancer, we evaluated the expression of these genes in human cancer cell lines and in tumor specimens. Using Western blot analysis, we detected loss among MSH2, MLH1, PMS2, and PMS1 proteins in DU145, LNCaP, p69SV40T, M2182, and M12 cells. In addition, genomic instability in the prostate cell lines including DU145, PC3, LNCaP, p67SV40T, M2182, and M12 was detected by a microsatellite mutation assay. Significantly, immunohistochemical analysis of prostatic tissue revealed the reduction or absence of MMR protein expression in the epithelium of prostate tumor foci compared with normal adjacent prostate tissue. In contrast to hereditary nonpolyposis colorectal cancer, characterized by defects predominantly in MLH1 and MSH2, the samples we examined showed more tumor foci with loss of PMS1 and PMS2. PMS1, which is only expressed in the basal cells in normal glands, is conspicuously absent in most prostate cancer. From these results, we conclude that there are defects of MMR genes in human prostate cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiosensitivity and Repair Kinetics of Gamma-Irradiated Leukocytes from Sporadic Prostate Cancer Patients and Healthy Individuals Assessed by Alkaline Comet Assay

Background: Impaired DNA repair mechanism is one of the main causes of tumor genesis. Study of intrinsic radiosensitivity of cancer patients in a non-target tissue (e.g. peripheral blood) might show the extent of DNA repair deficiency of cells in affected individuals and might be used a predictor of cancer predisposition. Methods: Initial radiation-induced DNA damage (ratio of Tail DNA/Head DN...

متن کامل

Association between mismatch repair gene MSH3 codons 1036 and 222 polymorphisms and sporadic prostate cancer in the Iranian population.

The mismatch repair system (MMR) is a post-replicative DNA repair mechanism whose defects can lead to cancer. The MSH3 protein is an essential component of the system. We postulated that MSH3 gene polymorphisms might therefore be associated with prostate cancer (PC). We studied MSH3 codon 222 and MSH3 codon 1036 polymorphisms in a group of Iranian sporadic PC patients. A total of 60 controls an...

متن کامل

IN SILICO INVESTIGATION OF THE EFFECT OF LYCOPENE ON THE EXPRESSION OF BRCA1 AND BRCA2 INHIBITOR GENES IN PROSTATE CANCER

Background & Aims: Cancer is a genetic disease that results from mutations in genes that control cell activities. Prostate cancer is one of the most common types of cancers in men. Surgery, radiation therapy, hormone therapy, and chemotherapy are used to treat this disease. These treatments have numerous side effects after treatment, including impotence along with the high cost of treatment. In...

متن کامل

Differential involvement of the human mismatch repair proteins, hMLH1 and hMSH2, in transcription-coupled repair.

Defects in DNA mismatch repair have been associated with both hereditary and sporadic forms of cancer. Recently, it has been shown that human cell lines deficient in mismatch repair were also defective in the transcription-coupled repair (TCR) of UV-induced DNA damage. We examined whether TCR of ionizing radiation-induced DNA damage also requires the genes involved in DNA mismatch repair. Cells...

متن کامل

Mutator pathways unleashed by epigenetic silencing in human cancer.

Human cancers exhibit genomic instability and an increased mutation rate due to underlying defects in DNA repair genes. Hypermethylation of CpG islands in gene promoter regions is an important mechanism of gene inactivation in cancer. Many cellular pathways, including DNA repair, are inactivated by this type of epigenetic lesion, resulting in mutator pathways. In this review, we discuss the adv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 61 10  شماره 

صفحات  -

تاریخ انتشار 2001